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Abstract

Background: Prescribed agricultural burning is a common land management practice, but little 

is known about the health effects from the resulting smoke exposure.

Objective: To examine the association between smoke from prescribed burning and 

cardiorespiratory outcomes in the U.S. state of Kansas.

Methods: We analyzed a zip code-level, daily time series of primary cardiorespiratory 

emergency department (ED) visits for February–May (months when prescribed burning is 

common in Kansas) in the years 2009–2011 (n=109,220). Given limited monitoring data, we 

formulated a measure of smoke exposure using non-traditional datasets, including fire radiative 
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power and locational attributes from remote sensing data sources. We then assigned a population-

weighted potential smoke impact factor (PSIF) to each zip code, based on fire intensity, 

smoke transport, and fire proximity. We used Poisson generalized linear models to estimate the 

association between PSIF on the same day and in the past 3 days and asthma, respiratory including 

asthma, and cardiovascular ED visits.

Results: During the study period, prescribed burning took place on approximately 8 million 

acres in Kansas. Same-day PSIF was associated with a 7% increase in the rate of asthma ED visits 

when adjusting for month, year, zip code, meteorology, day of week, holidays, and correlation 

within zip codes (rate ratio [RR]: 1.07; 95% confidence interval [CI]: 1.01, 1.13). Same-day PSIF 

was not associated with a combined outcome of respiratory ED visits (RR [95% CI]: 0.99 [0.97, 

1.02]), or cardiovascular ED visits (RR [95% CI]: 1.01 [0.98, 1.04]). There was no consistent 

association between PSIF during the past 3 days and any of the outcomes.

Significance: These results suggest an association between smoke exposure and asthma ED 

visits on the same day. Elucidating these associations will help guide public health programs that 

address population-level exposure to smoke from prescribed burning.

Impact Statement: In this time series study, we examined the health effects of smoke 

exposure from prescribed agricultural burning in Kansas. Our findings suggest an association 

between smoke from prescribed burning and emergency department visits for asthma, but not for 

cardiovascular outcomes.
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Introduction

Wildland fire smoke is associated with irritation of the respiratory system, exacerbations of 

chronic diseases such as asthma and chronic obstructive pulmonary disease, and premature 

mortality [1, 2]. Exposure to smoke is particularly hazardous for individuals with preexisting 

respiratory and cardiovascular disease [3].

Large-scale prescribed agricultural burning, a contributor to wildland fire smoke emissions, 

is a common land management practice. Prescribed burning of invasive vegetation and 

old growth returns nutrients back to the soil and can be beneficial to the surviving plants 

and landscapes [4]. It is used to reduce fuel loading in forested and agricultural areas 

and hence potentially prevent wildfires, and also used to enhance native vegetation, and 

maintain ecosystems [4, 5]. The smoke from prescribed burning contains numerous air 

pollutants including particulate matter, carbon monoxide, nitrogen oxides, and volatile 

organic compounds [5]. The known health effects of inhalation of air pollution include 

detrimental effects on the cardiovascular and respiratory systems [6].

Although the impact of prescribed burning on air quality is well described [7–11], research 

on its impact on health is limited [7, 12]. Results from the few studies on the health 

effects of prescribed burning suggest adverse health impacts from this practice. One study 

conducted in the southeastern United States estimated a modest increase in emergency 

Pennington et al. Page 2

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2023 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



department (ED) visits for asthma due to exposure to smoke from prescribed burning 

[13]. A second study conducted in this region used information from burn permits and 

concentration-response functions to estimate that prescribed burning is associated with 

asthma ED visits, hospital admission for respiratory reasons, and premature death [14]. In a 

different region of the United States, a study in the Pacific Northwest used a health impact 

assessment tool and observed associations between prescribed burning and an increase in 

respiratory symptoms, bronchitis, lost days of work, and death [15].

The Flint Hills region of Kansas and northern Oklahoma is a tallgrass prairie where 

approximately 2 million acres are cleared by prescribed agricultural burning each spring 

[16]. Burning in this region promotes the growth of desired grass species and controls 

woody species growth ultimately resulting in increased cattle weight gain [17, 18]. These 

burns are a substantial contributor to air pollution [19, 20]. Levels of air pollution that 

exceed the National Ambient Air Quality Standards have been recorded in Kansas and 

nearby states following prescribed burning activities [18]. In 2017, it was estimated that 

prescribed burning was responsible for 44% of primary fine particulate matter (PM2.5) 

emissions in Kansas, compared with only 14% nationally [21]. Despite elevated air pollution 

levels, the health effects of smoke exposure resulting from prescribed burning in Kansas 

is currently unknown. This study sought to determine the impact of prescribed agricultural 

burning on cardiorespiratory ED visits in Kansas.

Materials/Subjects and Methods

We conducted a time series study in the state of Kansas using a measure of smoke exposure 

formulated from non-traditional datasets and daily zip-code level cardiorespiratory ED visits 

from 2009 to 2011.

Limited air quality monitoring data were available for the region and time period of interest. 

Additionally, we found no accessible information on the dates and locations of prescribed 

burns. In the absence of this information, we used remote-sensing data and model-based 

predictions to calculate a “potential smoke impact factor” (PSIF; described below) and 

used the PSIF to characterize population-level exposure to smoke from agricultural 

burning. We downloaded burn-related information from the National Aeronautics and 

Space Administration’s (NASA) Fire Information for Resource Management System 

[22]. Specifically, we obtained information from NASA’s Moderate Resolution Imaging 

Spectroradiometer aboard the Terra and Aqua satellites, which identify fire pixels that have 

had one or more fires. From these 1×1 kilometer (km) pixels, we extracted information on 

maximum fire radiative power (FRP) for each day in our spatial and temporal domains. 

Typically, FRP is used to ascertain emission rates and factors [23–26], but for this 

assessment we used it to approximate fire intensity.

Initially, we considered using a distance-weighted measure of FRP for each block group 

without considering other meteorologic factors. However, as highlighted by Waller and 

colleagues [27], distance-weighting alone will not capture the true “exposure potential” as 

air pollutant impacts may depend not just on distance to emission sources but also on other 

factors such as wind characteristics. Hence, population-exposure resulting from fires with 
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differing fire intensities was estimated factoring in both smoke dispersion and proximity to 

each fire location. Smoke dispersion from the location of each individual fire was assumed 

to be heavily influenced by wind speed and direction as agricultural burning happens over 

grasslands with no significant elevation differences.

We combined information on fire intensity with estimates of surface meteorological 

parameters generated from the North American Land Data Assimilation System Phase 2 

(NLDAS) model [28]. First, we created eight wind sector designations of 45° each based 

on a continuous measure of wind direction (i.e., 22.5°– 67.4°, 67.5°– 112.4°, 112.5°– 

157.4°, 157.5°– 202.4°, 202.5°– 247.4°, 247.5°– 292.4°, 292.5°– 337.4°, 337.5°– 22.4°). 

Using hourly wind characteristics, we calculated daily wind probability and speed for each 

of the eight wind-sector designations, for each fire pixel and separately for each U.S. 

Census block group. We also created a distance matrix, providing the distance between 

each fire pixel and block group in Kansas. We limited the radius of influence for each fire 

to block groups within 100 km. After using wind direction and location to identify block 

groups that potentially could receive smoke from a fire due to congruent wind direction, 

we used the inverse of the squared distances between centroids of each block group and 

fire pixel as weights to calculate a daily smoke exposure metric for each block group. Of 

note, using a distance-weighted approach is common in environmental health, especially to 

assign pollution impacts from a specific source [27, 29, 30]. We then generated population-

weighted estimates of this potential smoke impact factor (PSIF) at the zip code level from 

block group level estimates to align with the geographic resolution of the available health 

data.

We evaluated the PSIF metric using the limited available air quality monitoring data. During 

the period of this analysis, air quality data were available on PM2.5 and ozone from 4 air 

quality monitors, coarse particulate matter (PM10) from 2 air quality monitors, and carbon 

monoxide from 1 air quality monitor. PM2.5 was sampled every 3 to 6 days; all other 

pollutants were sampled daily. The monitors were located in the cities of Wichita, Peck, 

Topeka, and Olathe; all in Eastern Kansas. We matched PSIF data with air monitoring data 

by zip code and estimated Pearson’s correlation coefficient (r).

We analyzed a zip code-level, daily time series of primary cardiorespiratory ED visits for 

the years 2009–2011. We examined three outcomes: 1) asthma ED visits 2) respiratory 

ED visits including asthma, wheeze, chronic obstructive pulmonary disease, pneumonia, 

and upper respiratory tract infections, and 3) cardiovascular ED visits including ischemic 

heart disease, dysrhythmia, congestive heart failure, and ischemic stroke (International 

Classification of Diseases, Ninth Revision, Clinical Modification [ICD-9-CM] codes listed 

in Table 1). Daily counts of ED visits for each outcome were calculated for each zip code 

in Kansas from individual-level data. We used zip code of patient residence for aggregating 

ED visits; ED visits were excluded if the patient resided outside the state of Kansas. ED 

data were obtained from the Kansas Hospital Association (KHA) and the Veterans Health 

Administration. On average, ED data were available from 100 KHA hospitals each year, 

representing approximately 73% of KHA member hospitals in Kansas during this period. 

Data were obtained from all Veterans Affairs hospitals in Kansas.
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We used Poisson generalized linear models that accounted for overdispersion to estimate 

the association between PSIF (same-day [lag 0] and 3-day moving average [lag 0–2], i.e., 

same day and two previous days]) and asthma, respiratory, and cardiovascular ED visits. 

Analyses were restricted to the months when prescribed burning is common in Kansas 

(February–May) and to zip codes with at least one primary asthma ED visit and one 

primary cardiovascular ED visit during the analysis months. The distribution of PSIF was 

highly skewed towards 0 and was modeled in two ways: 1) a binary variable (presence 

vs. absence of smoke exposure) and 2) a 4-level variable (zero vs. tertiles of non-zero 

exposure). All models were implemented using generalized estimating equations with a first-

order autoregressive correlation structure to allow for correlation within zip code. Covariate 

control for temporal and meteorologic factors was based on a previously developed model 

for estimating the association between air pollution and cardiorespiratory outcomes [31]. 

Adjusted models controlled for parametric cubic splines with monthly knots, year, zip 

code, day of week, holidays, cubic polynomials for lag 0 maximum temperature, cubic 

polynomials for lag 0 mean dew point, and cubic polynomials for lag 1–2 moving average 

minimum temperature (for models assessing 3-day moving average PSIF exposure).

For models with results indicating a health effect of prescribed burning, we also considered a 

negative control exposure (NCE) to evaluate residual confounding, model miss-specification 

and measurement error. In these analyses, we added PSIF 2 days in the future to the model 

and assessed its association with the outcome of interest. This negative control approach 

uses the fact that a future exposure cannot cause past health outcomes to assess potential 

biases [32–34]. We used PSIF 2 days in the future (rather than the typical 1 day used in this 

approach) because there is a morning satellite pass that may identify fires that started late on 

the previous day and were hence not captured in the previous day’s exposure estimate.

All analyses were conducted in SAS 9.4 (SAS Institute, Cary, NC, USA) and R 4.02 [35]. 

This activity was reviewed by the Centers for Disease Control and Prevention (CDC) and 

was conducted consistent with applicable federal law and CDC policy1.

Results

During the study years (2009–2011), prescribed burning took place on approximately 8 

million acres in Kansas [36]. PSIF levels were highest in April, the month when prescribed 

burning was most frequent (Table 2, Figure 1). Levels were highest in the Eastern part of the 

state where the Flint Hills region is located (Figure 1). Comparing the PSIF to the limited 

available air quality monitoring data, there was moderate overall correlation between PSIF 

and PM2.5 (r=0.33) with correlation at individual air monitors ranging from a minimum of 

r=0.16 to a maximum of r=0.49. Poor correlation was observed between PSIF and other air 

pollutants, such as, ozone, PM10, and carbon monoxide.

Between February–May, 2009–2011, 9,824 primary asthma ED visits, 69,620 primary 

respiratory ED visits, and 39,600 primary cardiovascular ED visits were identified in the 

health dataset (Table 1). Of these ED visits, 98% were to KHA hospitals with the remaining 

1See e.g., 45 C.F.R. part 46, 21 C.F.R. part 56; 42 U.S.C. §241(d); 5 U.S.C. §552a; 44 U.S.C. §3501 et seq.
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2% to Veterans Affairs hospitals. The average patient age was 41 years old; 34.7% of ED 

visits were to individuals under the age of 18 (Table 3). Approximately half of visits were 

to patients of female sex (49.2%). The majority of visits were to patients of White or Black 

race (72.3% and 10.7% respectively) and non-Hispanic or Latino ethnicity (81.0%). Counts 

of asthma ED visits peaked in the spring and fall months (Figure 2).

Having a non-zero PSIF level was associated with a 7% increase in the rate of asthma ED 

visits on the same day in both unadjusted and adjusted models (rate ratio [95% confidence 

interval (CI)]: 1.07 [1.02, 1.13], 1.07 [1.01, 1.13] respectively) (Table 4). When comparing 

tertiles of exposure to a reference group of non-exposure, adjusted rates of asthma ED visits 

on the same day were 3% higher in the first tertile, 10% higher in the second tertile, and 7% 

higher in the third tertile (rate ratio [95% CI]: 1.03 [0.93, 1.15], 1.10 [1.01, 1.19], 1.07 [0.99, 

1.15] respectively) than rates in the reference group of no exposure (PSIF=0). Having a 

non-zero three-day moving average PSIF level was associated with a 2% increase in the rate 

of asthma ED visits when adjusting for covariates (rate ratio [95% CI]: 1.02 [0.97, 1.08]) 

(Table 4). When comparing tertiles of 3-day moving average exposure to a reference group 

of non-exposure, the pattern was not monotonic; adjusted rates of asthma ED visits were 4% 

higher in the first tertile, 2% lower in the second tertile, and 6% higher in the third tertile 

(rate ratio [95% CI]: 1.04 [0.96, 1.12], 0.98 [0.92, 1.05], 1.06 [0.99, 1.04], respectively) than 

rates in the reference group of no exposure.

For the analysis between PSIF modeled as a binary variable and asthma, we evaluated the 

association of a NCE with the outcome, adding PSIF 2 days in the future to the model. We 

found no meaningful association between the future variable and asthma (results not shown) 

and inclusion of the future variable did not change the association between same-day PSIF 

and asthma. For this model to converge, we omitted zip code control for which had little 

impact in the main analyses.

When examining respiratory ED visits including asthma (Table 1), we found no evidence of 

an association with PSIF level. The adjusted rate ratios for both same-day PSIF level and 

3-day moving average PSIF level were close to the null value of 1 (rate ratio [95% CI]: 0.99 

[0.97, 1.02], 0.99 [0.97, 1.01], respectively) as were most of the rate ratios when comparing 

tertiles of exposure to a reference group of no exposure (Table 4).

For cardiovascular ED visits, we found no consistent evidence of an association with PSIF 

level. Having a non-zero PSIF level was associated with a 1% increase in the adjusted rate 

of ED visits on the same day (rate ratio [95% CI]: 1.01 [0.98, 1.04]), and having a non-zero 

3-day moving average PSIF level was associated with a 3% decrease in the adjusted rate 

of ED visits (rate ratio [95% CI]: 0.97 [0.94, 0.99]). When comparing tertiles of exposure 

to a reference group of no exposure, results were mixed, with some results suggesting an 

increased rate of ED visits with increasing level of PSIF and other results suggesting a 

decreased rate of ED visits with increasing level of PSIF (Table 4).
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Discussion

Our results suggest an association between smoke exposure during the months when 

prescribed burning is common (i.e., February–May) and asthma ED visits on the same 

day. Although negative controls are less than 100% sensitive for detection of bias due 

to confounding or model misspecification, the results of our NCE analyses showed no 

indication of major modeling or confounding issues impacting this result. We found no 

consistent evidence of an association between smoke exposure and all respiratory ED visits 

or cardiovascular ED visits. This study adds to the limited previous research suggesting 

adverse health impacts of smoke exposure resulting from prescribed burning.

Public health officials and land managers can take steps to limit exposure to smoke from 

prescribed burning. During seasons of prescribed burning activities, health departments can 

educate residents about protecting themselves from smoke exposure using some of the same 

actions recommended during episodes of wildfire smoke, including monitoring local air 

quality and keeping indoor air clean [3]. These precautions are particularly important for 

individuals at the highest risk for health impacts from smoke such as those with preexisting 

respiratory and cardiovascular disease. For land managers, the Kansas Flint Hills Smoke 

Management Plan details fire management practices that can be used to help limit smoke 

from prescribed burns [18]. These practices include using environmental and air quality 

conditions to inform when to burn and reducing fuel loads prior to burning. In the Flint Hills 

Region of Kansas, expanding the timing of prescribed burning to help diminish resulting 

smoke concentrations may also be an option [37, 38].

This study expands the scope of literature on the health effects of prescribed burning by 

being conducted in the state of Kansas and by using a different approach to estimating 

exposure to smoke from prescribed burning. Combining multiple environmental datasets 

to create the PSIF metric allowed us to estimate zip-code level exposure to smoke from 

prescribed burning in the absence of robust monitoring data. The combination of remote 

sensing data with surface wind characteristics allowed us to identify communities that are 

impacted by smoke from these fires. Because burning in Kansas occurs on a large-scale 

and in grasslands with a flat terrain, remote sensing data is expected to perform well at 

capturing prescribed burns in Kansas. However, our PSIF metric will not capture smoke 

exposure resulting from secondary formation and may misclassify exposure resulting from 

long-range transport of smoke and air pollution from sources that are outside of Kansas. 

Improving record keeping on the location and timing of prescribed burns along with 

increasing air quality monitoring in areas with prescribed burning could help reduce any 

potential exposure misclassification in future studies addressing the health impact of burning 

activities.

We should consider several potential limitations in addition to creating exposure measures 

from non-traditional data sources. Although exposure to and the impacts of smoke from 

prescribed burning may be larger in certain demographic groups, we did not examine 

potential differential effects by race, ethnicity, or socioeconomic factors. By examining 

combined outcomes of respiratory and cardiovascular illnesses, we may have masked true 

associations with individual respiratory or cardiovascular conditions. Using zip code as 

Pennington et al. Page 7

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2023 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the spatial unit of analysis has limitations because zip codes do not align directly with 

the spatial unit of data collection for health or environmental factors. We observed low 

correlations between the PSIF metric and air quality monitoring data; the limited availability 

of monitoring data prevented us from determining how representative these results may be 

for the full study region. We estimated ambient smoke exposure which may differ from 

personal smoke exposure due to behavior modifications such as avoiding going outside on 

days with poor air quality or using indoor air filtration systems. Although we adjusted for 

a wide range of potential confounders, given the large number of factors that can impact 

cardiorespiratory exacerbations it is possible that uncontrolled confounding may have 

impacted findings. Examples of potential confounders that were not accounted for include 

additional meteorological factors, area-level socioeconomic status, and land use factors. 

A previous study in the state of Georgia observed higher levels of social vulnerability in 

areas impacted by prescribed burning [14]. If the same association exists in Kansas, social 

vulnerability could potentially confound the results of this study given the known disparities 

in cardiorespiratory outcomes by components of social vulnerability such as socioeconomic 

status and race [39, 40].

The data for this study are for the years 2009 to 2011. Nevertheless, prescribed burning 

is still a common practice in Kansas. During the years of this study, an average of 

approximately 2.7 million acres were burned in prescribed fires each year in the Flint Hills 

region of Kansas. Comparatively, between 2019 and 2021, in the same region, an average of 

approximately 2.4 million acres were burned annually [36]. Given the similarities in acreage 

burned, we anticipate that our results are relevant to the health impacts of prescribed burning 

in Kansas today.

Prescribed burning is a common agricultural practice in Kansas and in many other 

geographic locations. In this study using ED data from across Kansas and a novel metric 

of smoke exposure, we observed an association between smoke during the months in which 

prescribed burning is common in Kansas and asthma ED visits. Continuing to elucidate 

the impact of smoke from prescribed burning on health will help guide public health 

programs that address population-level smoke exposure. Educating the public on protecting 

themselves from the smoke of prescribed burning and ensuring that land managers take steps 

to limit smoke production from these burns may be important steps to help limit health 

impacts.
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Figure 1. 
Quintiles of Potential Smoke Impact Factor (PSIF) levels, Kansas, February – May 2010. 

The darkest color indicates the highest PSIF quintile; white indicates no data.
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Figure 2. 
Primary respiratory, cardiovascular, and asthma ED visits by month, Kansas 2009 – 2011. 

Shading identifies visits in February – May that were used in the analysis. Open circles 

indicate respiratory ED visits, shaded triangles indicate cardiovascular ED visits, and shaded 

circles indicate asthma ED visits.
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Table 1.

Distribution and primary ICD-9-CM codes for asthma, respiratory, and cardiovascular emergency department 

visits, February–May, 2009–2011

Outcome ICD-9-CM codes1 Total
Visits per day

Mean (SD) Minimum Maximum

Asthma 493 9,824 27.3 (7.3) 7 55

Respiratory 460–466, 477, 480–486, 491–492, 493, 496, 786.07 69,620 193.4 (49.8) 109 350

Cardiovascular 410–414, 427, 428, 433–437, 440, 443–445, 447 39,600 110.0 (48.5) 25 286

1
Including extensions
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Table 2.

Distribution of potential smoke impact factor levels in zip codes used in the analysis, by month

Month Mean
Percentiles

50th 75th 90th

February 407.9 0 0 15.2

March 1,729.1 0 96.7 1,448.5

April 4,509.2 0 393.9 4,776.3

May 280.2 0 0 17.0
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Table 3.

Characteristics of asthma, respiratory, and cardiovascular emergency department visits, February–May, 2009–

2011

Characteristic Frequency (%)

Age, in years

 <18 37,882 (34.7)

 18–39 13,968 (12.8)

 40–54 11,358 (10.4)

 55–64 12,149 (11.1)

 65–74 13,248 (12.1)

 75+ 20,614 (18.9)

 Unknown 1 (0.0)

Sex

 Female 53,748 (49.2)

 Male 55,471 (50.8)

 Unknown 1 (0.0)

Race

 American Indian/Alaska Native 335 (0.3)

 Native Hawaiian/Pacific Islander 20 (0.0)

 Asian 1,445 (1.3)

 Black 11,656 (10.7)

 White 78,926 (72.3)

 More than one race 892 (0.8)

 Other 10,455 (9.6)

 Unknown 5,491 (5.0)

Ethnicity

 Hispanic/Latino 7,583 (6.9)

 Non-Hispanic/Latino 88,499 (81.0)

 Unknown 13,138 (12.0)
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