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Abstract

Background: Prescribed agricultural burning is a common land management practice, but little
is known about the health effects from the resulting smoke exposure.

Objective: To examine the association between smoke from prescribed burning and
cardiorespiratory outcomes in the U.S. state of Kansas.

Methods: We analyzed a zip code-level, daily time series of primary cardiorespiratory
emergency department (ED) visits for February—May (months when prescribed burning is
common in Kansas) in the years 2009-2011 (n=109,220). Given limited monitoring data, we
formulated a measure of smoke exposure using non-traditional datasets, including fire radiative
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power and locational attributes from remote sensing data sources. We then assigned a population-
weighted potential smoke impact factor (PSIF) to each zip code, based on fire intensity,

smoke transport, and fire proximity. We used Poisson generalized linear models to estimate the
association between PSIF on the same day and in the past 3 days and asthma, respiratory including
asthma, and cardiovascular ED visits.

Results: During the study period, prescribed burning took place on approximately 8 million
acres in Kansas. Same-day PSIF was associated with a 7% increase in the rate of asthma ED visits
when adjusting for month, year, zip code, meteorology, day of week, holidays, and correlation
within zip codes (rate ratio [RR]: 1.07; 95% confidence interval [CI]: 1.01, 1.13). Same-day PSIF
was not associated with a combined outcome of respiratory ED visits (RR [95% CI]: 0.99 [0.97,
1.02]), or cardiovascular ED visits (RR [95% CI]: 1.01 [0.98, 1.04]). There was no consistent
association between PSIF during the past 3 days and any of the outcomes.

Significance: These results suggest an association between smoke exposure and asthma ED
visits on the same day. Elucidating these associations will help guide public health programs that
address population-level exposure to smoke from prescribed burning.

Impact Statement: In this time series study, we examined the health effects of smoke
exposure from prescribed agricultural burning in Kansas. Our findings suggest an association
between smoke from prescribed burning and emergency department visits for asthma, but not for
cardiovascular outcomes.
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Introduction

Wildland fire smoke is associated with irritation of the respiratory system, exacerbations of
chronic diseases such as asthma and chronic obstructive pulmonary disease, and premature
mortality [1, 2]. Exposure to smoke is particularly hazardous for individuals with preexisting
respiratory and cardiovascular disease [3].

Large-scale prescribed agricultural burning, a contributor to wildland fire smoke emissions,
is a common land management practice. Prescribed burning of invasive vegetation and

old growth returns nutrients back to the soil and can be beneficial to the surviving plants
and landscapes [4]. It is used to reduce fuel loading in forested and agricultural areas

and hence potentially prevent wildfires, and also used to enhance native vegetation, and
maintain ecosystems [4, 5]. The smoke from prescribed burning contains numerous air
pollutants including particulate matter, carbon monoxide, nitrogen oxides, and volatile
organic compounds [5]. The known health effects of inhalation of air pollution include
detrimental effects on the cardiovascular and respiratory systems [6].

Although the impact of prescribed burning on air quality is well described [7-11], research
on its impact on health is limited [7, 12]. Results from the few studies on the health

effects of prescribed burning suggest adverse health impacts from this practice. One study
conducted in the southeastern United States estimated a modest increase in emergency
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department (ED) visits for asthma due to exposure to smoke from prescribed burning

[13]. A second study conducted in this region used information from burn permits and
concentration-response functions to estimate that prescribed burning is associated with
asthma ED visits, hospital admission for respiratory reasons, and premature death [14]. In a
different region of the United States, a study in the Pacific Northwest used a health impact
assessment tool and observed associations between prescribed burning and an increase in
respiratory symptoms, bronchitis, lost days of work, and death [15].

The Flint Hills region of Kansas and northern Oklahoma is a tallgrass prairie where
approximately 2 million acres are cleared by prescribed agricultural burning each spring
[16]. Burning in this region promotes the growth of desired grass species and controls
woody species growth ultimately resulting in increased cattle weight gain [17, 18]. These
burns are a substantial contributor to air pollution [19, 20]. Levels of air pollution that
exceed the National Ambient Air Quality Standards have been recorded in Kansas and
nearby states following prescribed burning activities [18]. In 2017, it was estimated that
prescribed burning was responsible for 44% of primary fine particulate matter (PM, 5)
emissions in Kansas, compared with only 14% nationally [21]. Despite elevated air pollution
levels, the health effects of smoke exposure resulting from prescribed burning in Kansas
is currently unknown. This study sought to determine the impact of prescribed agricultural
burning on cardiorespiratory ED visits in Kansas.

Materials/Subjects and Methods

We conducted a time series study in the state of Kansas using a measure of smoke exposure
formulated from non-traditional datasets and daily zip-code level cardiorespiratory ED visits
from 2009 to 2011.

Limited air quality monitoring data were available for the region and time period of interest.
Additionally, we found no accessible information on the dates and locations of prescribed
burns. In the absence of this information, we used remote-sensing data and model-based
predictions to calculate a “potential smoke impact factor” (PSIF; described below) and
used the PSIF to characterize population-level exposure to smoke from agricultural
burning. We downloaded burn-related information from the National Aeronautics and
Space Administration’s (NASA) Fire Information for Resource Management System

[22]. Specifically, we obtained information from NASA’s Moderate Resolution Imaging
Spectroradiometer aboard the Terra and Aqua satellites, which identify fire pixels that have
had one or more fires. From these 1x1 kilometer (km) pixels, we extracted information on
maximum fire radiative power (FRP) for each day in our spatial and temporal domains.
Typically, FRP is used to ascertain emission rates and factors [23-26], but for this
assessment we used it to approximate fire intensity.

Initially, we considered using a distance-weighted measure of FRP for each block group
without considering other meteorologic factors. However, as highlighted by Waller and
colleagues [27], distance-weighting alone will not capture the true “exposure potential” as
air pollutant impacts may depend not just on distance to emission sources but also on other
factors such as wind characteristics. Hence, population-exposure resulting from fires with
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differing fire intensities was estimated factoring in both smoke dispersion and proximity to
each fire location. Smoke dispersion from the location of each individual fire was assumed
to be heavily influenced by wind speed and direction as agricultural burning happens over
grasslands with no significant elevation differences.

We combined information on fire intensity with estimates of surface meteorological
parameters generated from the North American Land Data Assimilation System Phase 2
(NLDAS) model [28]. First, we created eight wind sector designations of 45° each based
on a continuous measure of wind direction (i.e., 22.5°- 67.4°, 67.5°- 112.4°, 112.5°-
157.4°, 157.5°- 202.4°, 202.5°— 247 .4°, 247.5°- 292.4°, 292.5°- 337.4°, 337.5°- 22.4°).
Using hourly wind characteristics, we calculated daily wind probability and speed for each
of the eight wind-sector designations, for each fire pixel and separately for each U.S.
Census block group. We also created a distance matrix, providing the distance between
each fire pixel and block group in Kansas. We limited the radius of influence for each fire
to block groups within 100 km. After using wind direction and location to identify block
groups that potentially could receive smoke from a fire due to congruent wind direction,
we used the inverse of the squared distances between centroids of each block group and
fire pixel as weights to calculate a daily smoke exposure metric for each block group. Of
note, using a distance-weighted approach is common in environmental health, especially to
assign pollution impacts from a specific source [27, 29, 30]. We then generated population-
weighted estimates of this potential smoke impact factor (PSIF) at the zip code level from
block group level estimates to align with the geographic resolution of the available health
data.

We evaluated the PSIF metric using the limited available air quality monitoring data. During
the period of this analysis, air quality data were available on PM, 5 and ozone from 4 air
quality monitors, coarse particulate matter (PM1) from 2 air quality monitors, and carbon
monoxide from 1 air quality monitor. PM, 5 was sampled every 3 to 6 days; all other
pollutants were sampled daily. The monitors were located in the cities of Wichita, Peck,
Topeka, and Olathe; all in Eastern Kansas. We matched PSIF data with air monitoring data
by zip code and estimated Pearson’s correlation coefficient (r).

We analyzed a zip code-level, daily time series of primary cardiorespiratory ED visits for
the years 2009-2011. We examined three outcomes: 1) asthma ED visits 2) respiratory

ED visits including asthma, wheeze, chronic obstructive pulmonary disease, pneumonia,
and upper respiratory tract infections, and 3) cardiovascular ED visits including ischemic
heart disease, dysrhythmia, congestive heart failure, and ischemic stroke (International
Classification of Diseases, Ninth Revision, Clinical Modification [ICD-9-CM] codes listed
in Table 1). Daily counts of ED visits for each outcome were calculated for each zip code
in Kansas from individual-level data. We used zip code of patient residence for aggregating
ED visits; ED visits were excluded if the patient resided outside the state of Kansas. ED
data were obtained from the Kansas Hospital Association (KHA) and the Veterans Health
Administration. On average, ED data were available from 100 KHA hospitals each year,
representing approximately 73% of KHA member hospitals in Kansas during this period.
Data were obtained from all Veterans Affairs hospitals in Kansas.
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We used Poisson generalized linear models that accounted for overdispersion to estimate
the association between PSIF (same-day [lag 0] and 3-day moving average [lag 0-2], i.e.,
same day and two previous days]) and asthma, respiratory, and cardiovascular ED visits.
Analyses were restricted to the months when prescribed burning is common in Kansas
(February—May) and to zip codes with at least one primary asthma ED visit and one
primary cardiovascular ED visit during the analysis months. The distribution of PSIF was
highly skewed towards 0 and was modeled in two ways: 1) a binary variable (presence

vs. absence of smoke exposure) and 2) a 4-level variable (zero vs. tertiles of non-zero
exposure). All models were implemented using generalized estimating equations with a first-
order autoregressive correlation structure to allow for correlation within zip code. Covariate
control for temporal and meteorologic factors was based on a previously developed model
for estimating the association between air pollution and cardiorespiratory outcomes [31].
Adjusted models controlled for parametric cubic splines with monthly knots, year, zip
code, day of week, holidays, cubic polynomials for lag 0 maximum temperature, cubic
polynomials for lag 0 mean dew point, and cubic polynomials for lag 1-2 moving average
minimum temperature (for models assessing 3-day moving average PSIF exposure).

For models with results indicating a health effect of prescribed burning, we also considered a
negative control exposure (NCE) to evaluate residual confounding, model miss-specification
and measurement error. In these analyses, we added PSIF 2 days in the future to the model
and assessed its association with the outcome of interest. This negative control approach
uses the fact that a future exposure cannot cause past health outcomes to assess potential
biases [32-34]. We used PSIF 2 days in the future (rather than the typical 1 day used in this
approach) because there is a morning satellite pass that may identify fires that started late on
the previous day and were hence not captured in the previous day’s exposure estimate.

All analyses were conducted in SAS 9.4 (SAS Institute, Cary, NC, USA) and R 4.02 [35].
This activity was reviewed by the Centers for Disease Control and Prevention (CDC) and
was conducted consistent with applicable federal law and CDC policy?.

During the study years (2009-2011), prescribed burning took place on approximately 8
million acres in Kansas [36]. PSIF levels were highest in April, the month when prescribed
burning was most frequent (Table 2, Figure 1). Levels were highest in the Eastern part of the
state where the Flint Hills region is located (Figure 1). Comparing the PSIF to the limited
available air quality monitoring data, there was moderate overall correlation between PSIF
and PM5 5 (r=0.33) with correlation at individual air monitors ranging from a minimum of
r=0.16 to a maximum of r=0.49. Poor correlation was observed between PSIF and other air
pollutants, such as, ozone, PMqq, and carbon monoxide.

Between February—May, 2009-2011, 9,824 primary asthma ED visits, 69,620 primary
respiratory ED visits, and 39,600 primary cardiovascular ED visits were identified in the
health dataset (Table 1). Of these ED visits, 98% were to KHA hospitals with the remaining

Isee e.g., 45 C.F.R. part 46, 21 C.F.R. part 56; 42 U.S.C. §241(d); 5 U.S.C. §552a; 44 U.S.C. 83501 et seq.

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2023 September 06.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Pennington et al. Page 6

2% to Veterans Affairs hospitals. The average patient age was 41 years old; 34.7% of ED
visits were to individuals under the age of 18 (Table 3). Approximately half of visits were
to patients of female sex (49.2%). The majority of visits were to patients of White or Black
race (72.3% and 10.7% respectively) and non-Hispanic or Latino ethnicity (81.0%). Counts
of asthma ED visits peaked in the spring and fall months (Figure 2).

Having a non-zero PSIF level was associated with a 7% increase in the rate of asthma ED
visits on the same day in both unadjusted and adjusted models (rate ratio [95% confidence
interval (CI)]: 1.07 [1.02, 1.13], 1.07 [1.01, 1.13] respectively) (Table 4). When comparing
tertiles of exposure to a reference group of non-exposure, adjusted rates of asthma ED visits
on the same day were 3% higher in the first tertile, 10% higher in the second tertile, and 7%
higher in the third tertile (rate ratio [95% CI]: 1.03 [0.93, 1.15], 1.10 [1.01, 1.19], 1.07 [0.99,
1.15] respectively) than rates in the reference group of no exposure (PSIF=0). Having a
non-zero three-day moving average PSIF level was associated with a 2% increase in the rate
of asthma ED visits when adjusting for covariates (rate ratio [95% CI]: 1.02 [0.97, 1.08])
(Table 4). When comparing tertiles of 3-day moving average exposure to a reference group
of non-exposure, the pattern was not monotonic; adjusted rates of asthma ED visits were 4%
higher in the first tertile, 2% lower in the second tertile, and 6% higher in the third tertile
(rate ratio [95% CI]: 1.04 [0.96, 1.12], 0.98 [0.92, 1.05], 1.06 [0.99, 1.04], respectively) than
rates in the reference group of no exposure.

For the analysis between PSIF modeled as a binary variable and asthma, we evaluated the
association of a NCE with the outcome, adding PSIF 2 days in the future to the model. We
found no meaningful association between the future variable and asthma (results not shown)
and inclusion of the future variable did not change the association between same-day PSIF
and asthma. For this model to converge, we omitted zip code control for which had little
impact in the main analyses.

When examining respiratory ED visits including asthma (Table 1), we found no evidence of
an association with PSIF level. The adjusted rate ratios for both same-day PSIF level and
3-day moving average PSIF level were close to the null value of 1 (rate ratio [95% CI]: 0.99
[0.97, 1.02], 0.99 [0.97, 1.01], respectively) as were most of the rate ratios when comparing
tertiles of exposure to a reference group of no exposure (Table 4).

For cardiovascular ED visits, we found no consistent evidence of an association with PSIF
level. Having a non-zero PSIF level was associated with a 1% increase in the adjusted rate
of ED visits on the same day (rate ratio [95% CI]: 1.01 [0.98, 1.04]), and having a non-zero
3-day moving average PSIF level was associated with a 3% decrease in the adjusted rate

of ED visits (rate ratio [95% CI]: 0.97 [0.94, 0.99]). When comparing tertiles of exposure
to a reference group of no exposure, results were mixed, with some results suggesting an
increased rate of ED visits with increasing level of PSIF and other results suggesting a
decreased rate of ED visits with increasing level of PSIF (Table 4).
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Discussion

Our results suggest an association between smoke exposure during the months when
prescribed burning is common (i.e., February—May) and asthma ED visits on the same

day. Although negative controls are less than 100% sensitive for detection of bias due

to confounding or model misspecification, the results of our NCE analyses showed no
indication of major modeling or confounding issues impacting this result. We found no
consistent evidence of an association between smoke exposure and all respiratory ED visits
or cardiovascular ED visits. This study adds to the limited previous research suggesting
adverse health impacts of smoke exposure resulting from prescribed burning.

Public health officials and land managers can take steps to limit exposure to smoke from
prescribed burning. During seasons of prescribed burning activities, health departments can
educate residents about protecting themselves from smoke exposure using some of the same
actions recommended during episodes of wildfire smoke, including monitoring local air
quality and keeping indoor air clean [3]. These precautions are particularly important for
individuals at the highest risk for health impacts from smoke such as those with preexisting
respiratory and cardiovascular disease. For land managers, the Kansas Flint Hills Smoke
Management Plan details fire management practices that can be used to help limit smoke
from prescribed burns [18]. These practices include using environmental and air quality
conditions to inform when to burn and reducing fuel loads prior to burning. In the Flint Hills
Region of Kansas, expanding the timing of prescribed burning to help diminish resulting
smoke concentrations may also be an option [37, 38].

This study expands the scope of literature on the health effects of prescribed burning by
being conducted in the state of Kansas and by using a different approach to estimating
exposure to smoke from prescribed burning. Combining multiple environmental datasets
to create the PSIF metric allowed us to estimate zip-code level exposure to smoke from
prescribed burning in the absence of robust monitoring data. The combination of remote
sensing data with surface wind characteristics allowed us to identify communities that are
impacted by smoke from these fires. Because burning in Kansas occurs on a large-scale
and in grasslands with a flat terrain, remote sensing data is expected to perform well at
capturing prescribed burns in Kansas. However, our PSIF metric will not capture smoke
exposure resulting from secondary formation and may misclassify exposure resulting from
long-range transport of smoke and air pollution from sources that are outside of Kansas.
Improving record keeping on the location and timing of prescribed burns along with
increasing air quality monitoring in areas with prescribed burning could help reduce any
potential exposure misclassification in future studies addressing the health impact of burning
activities.

We should consider several potential limitations in addition to creating exposure measures
from non-traditional data sources. Although exposure to and the impacts of smoke from
prescribed burning may be larger in certain demographic groups, we did not examine
potential differential effects by race, ethnicity, or socioeconomic factors. By examining
combined outcomes of respiratory and cardiovascular illnesses, we may have masked true
associations with individual respiratory or cardiovascular conditions. Using zip code as
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the spatial unit of analysis has limitations because zip codes do not align directly with

the spatial unit of data collection for health or environmental factors. We observed low
correlations between the PSIF metric and air quality monitoring data; the limited availability
of monitoring data prevented us from determining how representative these results may be
for the full study region. We estimated ambient smoke exposure which may differ from
personal smoke exposure due to behavior modifications such as avoiding going outside on
days with poor air quality or using indoor air filtration systems. Although we adjusted for

a wide range of potential confounders, given the large number of factors that can impact
cardiorespiratory exacerbations it is possible that uncontrolled confounding may have
impacted findings. Examples of potential confounders that were not accounted for include
additional meteorological factors, area-level socioeconomic status, and land use factors.

A previous study in the state of Georgia observed higher levels of social vulnerability in
areas impacted by prescribed burning [14]. If the same association exists in Kansas, social
vulnerability could potentially confound the results of this study given the known disparities
in cardiorespiratory outcomes by components of social vulnerability such as socioeconomic
status and race [39, 40].

The data for this study are for the years 2009 to 2011. Nevertheless, prescribed burning

is still a common practice in Kansas. During the years of this study, an average of
approximately 2.7 million acres were burned in prescribed fires each year in the Flint Hills
region of Kansas. Comparatively, between 2019 and 2021, in the same region, an average of
approximately 2.4 million acres were burned annually [36]. Given the similarities in acreage
burned, we anticipate that our results are relevant to the health impacts of prescribed burning
in Kansas today.

Prescribed burning is a common agricultural practice in Kansas and in many other
geographic locations. In this study using ED data from across Kansas and a novel metric

of smoke exposure, we observed an association between smoke during the months in which
prescribed burning is common in Kansas and asthma ED visits. Continuing to elucidate

the impact of smoke from prescribed burning on health will help guide public health
programs that address population-level smoke exposure. Educating the public on protecting
themselves from the smoke of prescribed burning and ensuring that land managers take steps
to limit smoke production from these burns may be important steps to help limit health
impacts.
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Figure 1.

Quintiles of Potential Smoke Impact Factor (PSIF) levels, Kansas, February — May 2010.
The darkest color indicates the highest PSIF quintile; white indicates no data.
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Figure2.

Primary respiratory, cardiovascular, and asthma ED visits by month, Kansas 2009 — 2011.
Shading identifies visits in February — May that were used in the analysis. Open circles
indicate respiratory ED visits, shaded triangles indicate cardiovascular ED visits, and shaded
circles indicate asthma ED visits.
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Table 1.

Distribution and primary ICD-9-CM codes for asthma, respiratory, and cardiovascular emergency department
visits, February—May, 2009-2011

Visits per day
Outcome 1CD-9-CM codest Total
Mean (SD) Minimum Maximum
Asthma 493 9,824 27.3(7.3) 7 55
Respiratory 460-466, 477, 480-486, 491-492, 493, 496, 786.07 69,620 193.4 (49.8) 109 350
Cardiovascular 410-414, 427, 428, 433-437, 440, 443-445, 447 39,600 110.0 (48.5) 25 286

1 . .
Including extensions
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Table 2.

Distribution of potential smoke impact factor levels in zip codes used in the analysis, by month

Percentiles

Month Mean
501h 75(h goth

February  407.9 0 0 15.2
March 1,729.1 0 96.7  1,4485
April 4,509.2 0 3939 4,776.3
May 280.2 0 0 17.0
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Characteristics of asthma, respiratory, and cardiovascular emergency department visits, February—May, 2009—

Table 3.

2011

Characteristic Frequency (%)

Age, in years
<18 37,882 (34.7)
18-39 13,968 (12.8)
40-54 11,358 (10.4)
55-64 12,149 (11.1)
65-74 13,248 (12.1)
75+ 20,614 (18.9)
Unknown 1(0.0)

Sex
Female 53,748 (49.2)
Male 55,471 (50.8)
Unknown 1(0.0)

Race
American Indian/Alaska Native 335(0.3)
Native Hawaiian/Pacific Islander 20 (0.0)
Asian 1,445 (1.3)
Black 11,656 (10.7)
White 78,926 (72.3)
More than one race 892 (0.8)
Other 10,455 (9.6)
Unknown 5,491 (5.0)

Ethnicity
Hispanic/Latino 7,583 (6.9)
Non-Hispanic/Latino 88,499 (81.0)
Unknown 13,138 (12.0)
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